Infinite-Duration Bidding Games

نویسندگان

  • Guy Avni
  • Thomas A. Henzinger
  • Ventsislav Chonev
چکیده

Two-player games on graphs are widely studied in formal methods as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the bidding mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. Both players have separate budgets, which sum up to 1. In each turn, a bidding takes place. Both players submit bids simultaneously, and a bid is legal if it does not exceed the available budget. The winner of the bidding pays his bid to the other player and moves the token. For reachability objectives, repeated bidding games have been studied and are called Richman games [32, 31]. There, a central question is the existence and computation of threshold budgets; namely, a value t ∈ [0, 1] such that if Player 1’s budget exceeds t, he can win the game, and if Player 2’s budget exceeds 1− t, he can win the game. We focus on parity games and mean-payoff games. We show the existence of threshold budgets in these games, and reduce the problem of finding them to Richman games. We also determine the strategy-complexity of an optimal strategy. Our most interesting result shows that memoryless strategies suffice for mean-payoff

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

de Travail du Centre d ’ Economie de la Sorbonne Repeated games with asymmetric information and random price fluctuations at finance markets : the case of countable state space

This paper is concerned with multistage bidding models introduced by De Meyer and Moussa Saley (2002) to analyze the evolution of the price system at finance markets with asymmetric information. The zero-sum repeated games with incomplete information are considered modeling the bidding with countable sets of possible prices and admissible bids. It is shown that, if the liquidation price of a sh...

متن کامل

Discrete bidding games

We study variations on combinatorial games in which, instead of alternating moves, the players bid with discrete bidding chips for the right to determine who moves next. We consider both symmetric and partisan games, and explore differences between discrete bidding games and Richman games, which allow real-valued bidding. Unlike Richman games, discrete bidding game variations of many familiar g...

متن کامل

Discrete All-Pay Bidding Games

In an all-pay auction, only one bidder wins but all bidders must pay the auctioneer. All-pay bidding games arise from attaching a similar bidding structure to traditional combinatorial games to determine which player moves next. In contrast to the established theory of single-pay bidding games, optimal play involves choosing bids from some probability distribution that will guarantee a minimum ...

متن کامل

On Fixed-Parameter Complexity of Infinite Games

We investigate and classify fixed parameter complexity of several infinite duration games, including Rabin, Streett, Muller, parity, mean payoff, and simple stochastic, using different natural parameterizations. Most known fixed parameter intractable games are PSPACEor EXP-complete classically, AW [∗] or XP-hard parametrically, and are all finite duration games. In contrast, the games we consid...

متن کامل

Playing Pushdown Parity Games in a Hurry ( Extended Abstract )

We continue the investigation of finite-duration variants of infinite-duration games by extending known results for games played on finite graphs to those played on infinite ones. In particular, we establish an equivalence between pushdown parity games and a finite-duration variant. This allows to determine the winner of a pushdown parity game by solving a reachability game on a finite tree.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017